263 research outputs found

    Method Exploration of Self-adaptive Entity Matching in Map Fusion

    Get PDF
    AbstractEntity matching is a crucial and hard technology in map fusion. Current methods still exists some deficiencies, such as matching efficiency is not high, low degree of automation and poor universality, these methods can not meet the matching needs of large data integration, therefore, the urgent need to develop more effective and intelligent methods. This paper analyzed present research situation and existing problems of entity matching, illustrated the necessity of developing self-adaptive entity matching, pointed out urgent research contents and key issues that need to be resolved urgently in self-adaptive entity matching, provided preliminary research scheme of implementing self-adaptive entity matching, finally, introduced characteristics and advantages of self-adaptive entity matching method presented in this paper

    Application of two risk assessment models in evaluation of occupational health risk of a carbon fiber factory

    Get PDF

    EquivAct: SIM(3)-Equivariant Visuomotor Policies beyond Rigid Object Manipulation

    Full text link
    If a robot masters folding a kitchen towel, we would also expect it to master folding a beach towel. However, existing works for policy learning that rely on data set augmentations are still limited in achieving this level of generalization. Our insight is to add equivariance to both the visual object representation and policy architecture. We propose EquivAct which utilizes SIM(3)-equivariant network structures that guarantee generalization across all possible object translations, 3D rotations, and scales by construction. Training of EquivAct is done in two phases. We first pre-train a SIM(3)-equivariant visual representation on simulated scene point clouds. Then, we learn a SIM(3)-equivariant visuomotor policy on top of the pre-trained visual representation using a small amount of source task demonstrations. We demonstrate that after training, the learned policy directly transfers to objects that substantially differ in scale, position and orientation from the source demonstrations. In simulation, we evaluate our method in three manipulation tasks involving deformable and articulated objects thereby going beyond the typical rigid object manipulation tasks that prior works considered. We show that our method outperforms prior works that do not use equivariant architectures or do not use our contrastive pre-training procedure. We also show quantitative and qualitative experiments on three real robot tasks, where the robot watches twenty demonstrations of a tabletop task and transfers zero-shot to a mobile manipulation task in a much larger setup. Project website: https://equivact.github.i

    Strategies to gain novel Alzheimer’s disease diagnostics and therapeutics using modulators of ABCA transporters

    Get PDF
    Adenosine-triphosphate-(ATP)-binding cassette (ABC) transport proteins are ubiquitously present membrane-bound efflux pumps that distribute endo- and xenobiotics across intra- and intercellular barriers. Discovered over 40 years ago, ABC transporters have been identified as key players in various human diseases, such as multidrug-resistant cancer and atherosclerosis, but also neurodegenerative diseases, such as Alzheimer’s disease (AD). Most prominent and well-studied are ABCB1, ABCC1, and ABCG2, not only due to their contribution to the multidrug resistance (MDR) phenotype in cancer, but also due to their contribution to AD. However, our understanding of other ABC transporters is limited, and most of the 49 human ABC transporters have been largely neglected as potential targets for novel small-molecule drugs. This is especially true for the ABCA subfamily, which contains several members known to play a role in AD initiation and progression. This review provides up-to-date information on the proposed functional background and pathological role of ABCA transporters in AD. We also provide an overview of small-molecules shown to interact with ABCA transporters as well as potential in silico, in vitro, and in vivo methodologies to gain novel templates for the development of innovative ABC transporter-targeting diagnostics and therapeutics

    Pleiotropic effects of the twin-arginine translocation system on biofilm formation, colonization, and virulence in Vibrio cholerae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Twin-arginine translocation (Tat) system serves to translocate folded proteins, including periplasmic enzymes that bind redox cofactors in bacteria. The Tat system is also a determinant of virulence in some pathogenic bacteria, related to pleiotropic effects including growth, motility, and the secretion of some virulent factors. The contribution of the Tat pathway to <it>Vibrio cholerae </it>has not been explored. Here we investigated the functionality of the Tat system in <it>V. cholerae</it>, the etiologic agent of cholera.</p> <p>Results</p> <p>In <it>V. cholerae</it>, the <it>tatABC </it>genes function in the translocation of TMAO reductase. Deletion of the <it>tatABC </it>genes led to a significant decrease in biofilm formation, the ability to attach to HT-29 cells, and the ability to colonize suckling mouse intestines. In addition, we observed a reduction in the output of cholera toxin, which may be due to the decreased transcription level of the toxin gene in <it>tatABC </it>mutants, suggesting an indirect effect of the mutation on toxin production. No obvious differences in flagellum biosynthesis and motility were found between the <it>tatABC </it>mutant and the parental strain, showing a variable effect of Tat in different bacteria.</p> <p>Conclusion</p> <p>The Tat system contributes to the survival of <it>V. cholerae </it>in the environment and <it>in vivo</it>, and it may be associated with its virulence.</p

    Derivation of hypermethylated pluripotent embryonic stem cells with high potency.

    Get PDF
    Naive hypomethylated embryonic pluripotent stem cells (ESCs) are developmentally closest to the preimplantation epiblast of blastocysts, with the potential to contribute to all embryonic tissues and the germline, excepting the extra-embryonic tissues in chimeric embryos. By contrast, epiblast stem cells (EpiSCs) resembling postimplantation epiblast are relatively more methylated and show a limited potential for chimerism. Here, for the first time, we reveal advanced pluripotent stem cells (ASCs), which are developmentally beyond the pluripotent cells in the inner cell mass but with higher potency than EpiSCs. Accordingly, a single ASC contributes very efficiently to the fetus, germline, yolk sac and the placental labyrinth in chimeras. Since they are developmentally more advanced, ASCs do not contribute to the trophoblast. ASCs were derived from blastocysts in two steps in a chemically defined medium supplemented with Activin A and basic fibroblast growth factor, followed by culturing in ABCL medium containing ActA, BMP4, CHIR99021 and leukemia inhibitory factor. Notably, ASCs exhibit a distinct transcriptome with the expression of both naive pluripotency genes, as well as mesodermal somatic genes; Eomes, Eras, Tdgf1, Evx1, hand1, Wnt5a and distinct repetitive elements. Conversion of established ESCs to ASCs is also achievable. Importantly, ASCs exhibit a stable hypermethylated epigenome and mostly intact imprints as compared to the hypomethylated inner cell mass of blastocysts and naive ESCs. Properties of ASCs suggest that they represent cells at an intermediate cellular state between the naive and primed states of pluripotency.This work was supported by grants from the Ministry of Science and Technology project of Inner Mongolia (N0. 20130216), the National Natural Science Foundation of China (No.31560335) and by Wellcome Trust Investigator Award to MAS, and by a core grant from the Wellcome Trust and CRUK to the Gurdon Institute
    • …
    corecore